
Créer des branches avec Git/GitHub – Synthèse

 Étape / Thème Résumé & explications Commandes associées

 1. Outils et notions de base
Git = système de gestion de versions local. GitHub/GitLab =

plateformes collaboratives (hébergement, CI/CD).
—

 2. Installation de Git

(Windows)

1. Aller sur https://git-scm.com

2. Suivre la doc officielle (commandes, configuration)

3. Authentification à 2 facteurs recommandée

4. Option : installer Winget pour gérer les paquets

Windows

—

 3. Vérifier installation Vérifie que Git est bien installé - git --version

 4. Créer un dossier de travail

local
Crée un dossier, se place dedans, puis visualise le contenu

- mkdir git_tuto

- cd git_tuto

- ls

 5. Cloner un dépôt distant
Cloner un repo existant depuis GitHub (ou GitLab). Option :

renommer le dossier à la volée.

- git clone <URL>

- git clone <URL> nouveau_nom

 6. Sécuriser la

communication Git/GitHub (ou

GitLab) avec SSH

Optionnel mais recommandé : utiliser une paire de clés

SSH au lieu de HTTPS. Permet une connexion + rapide et

sécurisée.

- ssh-keygen -t ed25519 -C "ton@email.com"

- cat ~/.ssh/Nom_clé_publique

Ajouter la clé sur GitHub > Settings > SSH & GPG keys

 7. Créer un dépôt local (init)

1. Initialise un dépôt Git local

2. Ajoute un fichier (README.md par ex.)

3. Prépare le commit initial

- git init

- touch README.md

- git add README.md

- git commit -m "Initial commit"

 8. Lier le dépôt local à GitHub

1. Créer un **nouveau repo vide sur GitHub** via le bouton

 > New repository

2. Copier l’URL SSH ou HTTPS

3. Lier à Git local + push

- git remote add origin <URL>

- git branch -M main

- git push -u origin main

 9. Fichiers à ignorer dans Git
Créer un fichier `.gitignore` pour exclure fichiers sensibles

ou inutiles (ex: `.env`, `.DS_Store`, etc.)
- touch .gitignore

 10. Comprendre les branches

- `main` = branche principale

- Chaque branche = nouvelle fonctionnalité isolée

- Git Flow = schéma logique pour organisation du code

- Fusion via `merge` une fois la fonctionnalité prête

—

 11. Vérifier les branches

existantes
Affiche la liste des branches locales existantes - git branch

 12. Créer une nouvelle

branche (`develop`)

Création + bascule directe sur une nouvelle branche

`develop` à partir de `main`
- git checkout -b develop

 13. Ajouter un fichier (ex:

README)
Préparation de fichiers pour le commit - git add README.md

 14. Commit des modifications Crée un commit clair pour la création de la branche - git commit -m "Ajout de la branche develop"

 15. Pousser une branche vers

le dépôt distant
Pousse la nouvelle branche `develop` vers GitHub - git push -u origin develop

 Script Git/GitHub – Clonage, Création de Dépôt, Branche & Push

bash

Étape 1 : Vérifier si Git est installé

git --version

Étape 2 : Créer un dossier de travail et s’y rendre

mkdir git_tuto

cd git_tuto

Étape 3 : Initialiser un dépôt Git local

git init

Étape 4 : Créer un fichier README

echo "# Mon projet" > README.md

Étape 5 : Ajouter le fichier au suivi Git

git add README.md

Étape 6 : Commit initial

git commit -m "Initial commit avec README"

Étape 7 : Créer un nouveau dépôt distant sur GitHub (via interface web)

→ Aller sur GitHub > "+" > New repository > Nom : git_tuto > Create

Étape 8 : Lier le dépôt local au dépôt distant (remplacer par votre propre URL)

git remote add origin git@github.com:mon-utilisateur/git_tuto.git

Étape 9 : Pousser le projet sur GitHub (branche principale)

git push -u origin main

Étape 10 : Vérifier les branches existantes

git branch

Étape 11 : Créer une nouvelle branche (ex: develop) et basculer dessus

git checkout -b develop

Étape 12 : Ajouter un nouveau fichier dans la branche develop

echo "Nouvelles fonctionnalités en développement" > develop.txt

git add develop.txt

git commit -m "Ajout fichier develop.txt dans la branche develop"

Étape 13 : Pousser la branche develop vers GitHub

git push -u origin develop

Étape 14 : (Optionnel) Voir l'état actuel du projet

git status

Étape 15 : Lister les branches locales

git branch

Étape 16 : Lister les branches distantes

git branch -r

 Bonus : Générer et configurer une clé SSH (si pas encore fait)

bash

Générer une paire de clés SSH (laisser le chemin par défaut)

ssh-keygen -t ed25519 -C "votre.email@example.com"

Lancer l'agent SSH

eval "$(ssh-agent -s)"

Ajouter la clé privée à l'agent

ssh-add ~/.ssh/id_ed25519

Copier la clé publique

cat ~/.ssh/id_ed25519.pub

👉 Puis aller sur GitHub > Settings > SSH and GPG Keys > New SSH Key > coller la clé

publique

