INTRODUCTION

B Python pour I'analyse des données : Introduction 8 NumPy, Pandas, Matplotlib et
Seaborn.

I Objectifs :
B Comprendre pourquoi et comment utiliser chaque outil.
B Découvrir leurs concepts fondamentaux.

B Apprendre via des cas pratiques.
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POURQUOI PYTHON POUR LA DATA?

I Langage puissant, flexible et lisible.
I Large écosystéme pour la manipulation de données et la visualisation.

I Bibliothéques optimisées pour la performance.



ETAPES CLES DE L’ANALYSE DE DONNEES
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MODULE | : NUMPY

B Introduction 2 NumPy : Manipulation efficace des tableaux numériques et calculs
optimisés.

B Caractéristiques clés :
B Prend en charge les tableaux multidimensionnels et les matrices.
B Fournit des outils pour la manipulation des tableaux et les opérations mathématiques.

I Sert de base a des bibliothéques telles que Pandas, Matplotlib et Scikit-learn.

https://www.w3schools.com
/python/numpy/default.asp



MODULE | : NUMPY

B Cas pratique :
B Manipulation et transformation des données.
B0 Algébre linéaire, transformée de Fourier et génération de nombres aléatoires.
B Calculs a haute performance pour les grands ensembles de données.

I Génération de datasets



NUMPY INSTALLATION ET IMPORTATION

™ Installation :

2 pip install numpy
¥ conda install numpy

2 Importation :

& import numpy as np



NUMPY CREATION DE TABLEAUX

W np.array([l, 2, 3]) : Crée un tableau a partir d’une liste.

W np.array([[1, 2], [3, 4]]) : Crée une matrice a partir de deux listes

I Remarques importantes :
I Les tableaux sont plus efficaces que les listes Python.

B Utilisez .shape pour obtenir les dimensions d'un tableau.



NUMPY CREATION DE TABLEAUX

B np.zeros((3, 3)) : Matrice de zéros de taille 3x3.

I np.ones((2, 4)) : Matrice de un de taille 2 lignes et 4 colonnes.
2 np.random((3, 3)) : Matrice de valeurs aléatoires de taille 3x3.
B np.linspace(0, I, 5) : Génére 5 valeurs entre 0 et |.

B np.eye(4) : Matrice identité avec | en diagonale de taille 4x4

B Remarques importantes :
B Personnalisation des formes de tableaux a l'aide de tuples.

B Utile pour initialiser les poids dans |'apprentissage automatique



NUMPY OPERATIONS MATHEMATIQUES

Addition :

B Array + 2 : ajoute 2 a tous les éléments

B arrayl + array2 : addition de tous les éléments
B Multiplication :

B Arrayl *array2

B Np.dot(arrayl, array2)

B Np.matmul(array|, array2)

Moyenne : np.mean(array)

Somme : np.sum(array)

8 Remarques importantes :

I Les opérations sont vectorisées, ce qui les rend plus rapides que les boucles Python.

B Utilisez np.matmul pour la multiplication de matrices.



NUMPY INDEXATION ET DECOUPAGE

B Accés aux éléments :
B Arr =nparray([l, 2, 3, 4, 5, 6])

B Arr[0] = accés au premier élément

B8 Arr[-1] = accés au dernier élément

¥ Découpage de tableaux :

B Arr[l1:4] = accés aux éléments | a 3
B Indexation multidimensionnelle :
B Arr =nparray([[I, 2, 3], [4, 5, 6]])

B A[O, 2] = accés au premier élément , 3éme colonne

B} Remarques importantes :

B Lindex commence a2 0



NUMPY MANIPULATION DES DIMENSIONS

B Reshape :
B array.reshape((rows, cols)) : Convertit la taille d’'une matrice
I Concaténation de tableaux :
B np.concatenate((arrl, arr2))
B Découpage de tableaux :
B Np.split(arr, 2)
B Transposer tableau :

B array.T
& Np.transpose(arr)



NUMPY ALGEBRE LINEAIRE

I Résolution de systémes linéaires
B A =nparray([[3, 1], [I, 2]]

& B = np.array([9, 8])
B X = np.linalg.solve(a, b)



NUMPY TRAVAILLER AVEC DES NOMBRES

ALEATOIRES

B Générations de nombres aléatoires :
B Np.random.seed(42) : paramétrage de reproductibilité
B Np.random.rand(3) : générer 3 nombres aléatoires
" Entiers aléatoires :

B Np.random.randint(0, 10, size=5) : générer des entiers aléatoires entre 0 et 9



NUMPY — POUR LA DATA ANALYSE

I Nettoyage des données

B Gérer les valeurs manquantes et les valeurs aberrantes.

B Transformation des données

B Normaliser et mettre a I'échelle les données.

B Intégration

B Utilisation avec Pandas pour l'analyse de données tabulaires.



NUMPY — APPLICATIONS REELLES DE NUMPY

B Science des données :

B Traiter de grands ensembles de données pour les modéles d'apprentissage automatique.

B Traitement d'images :

B Manipuler et analyser des données d'images sous forme de tableaux.

B Simulations physiques

B Effectuer des calculs sur des données multidimensionnelles.

B Finance :

I8 Modéliser et analyser les cours des actions et les tendances du marché.



NUMPY — ERREURS COURANTES ET SOLUTIONS

2 Shape Mismatch :

B Vérifier la forme des tableaux avant les opérations.

2 TypeError :

I Veillez a la cohérence des types de données dans les tableaux.

2 MemoryError :

B Utilisez des types de données plus petits ou découpez les grands ensembles de
données.



NUMPY — BONNES PRATIQUES POUR

L'UTILISATION DE NUMPY

I Utiliser des opérations vectorisées :

B Eviter les boucles Python pour de meilleures performances.

B Documenter les transformations :

B Garder une trace des formes et des manipulations des tableaux.

I Définir des graines aléatoires (seed) :

B Assurer la reproductibilité des opérations aléatoires.



MODULE 2 : PANDAS

B Introduction a Pandas : Analyse et manipulation de données structurées avec
DataFrame et Series.

B Caractéristiques clés :

B Simplifie le travail avec des données structurées comme les tableaux et les séries
chronologiques.

I Prise en charge de l'importation et de I'exportation de données a partir de différents
formats (CSV, Excel, SQL, etc.).

I Offre des structures de données faciles a utiliser comme les DataFrames et les Séries.

https://www.w3schools.com
/python/pandas/default.asp



MODULE 2 : PANDAS

B Cas pratique :

B Nettoyage et prétraitement des données.
B Analyse exploratoire des données (EDA).

B Intégration avec des bibliothéques de visualisation et d'apprentissage automatique.



PANDAS INSTALLATION ET IMPORTATION

W Installation :
B pip install pandas
I Conda install pandas

2 Importation : import pandas as pd



PANDAS DATAFRAME ET SERIES

I Tableau unidimensionnel étiqueté pouvant contenir n'importe quel type de
données.

I Idéale pour les données a colonne unique.

Series 1
B Créer une série : INDEX | DATA
B pd.Series([0, I, 2], index["a”, “b”, “c”]) o A
1 B
2 | ¢
3 D
4 E
5 F




PANDAS DATAFRAME ET SERIES

8 Structure de données bidimensionnelle et tabulaire.

I Peut contenir des types de données hétérogénes.

" Créer un DataFrame :
. Data = {"Series | ["A”, "B”], “Saries?”: [u I ”’ "2”],
!

Series 1 Series 2 Series 3 Dataframe
—_— IINDEX DATA INDEX | DATA INDEX | DATA . INDEX SERIES 1 SERIES 2 SERIES 3

0 df = pd.DataFrame(data) """ 7 Taa e a
1 B 1 2 1 A il B 2 A
2 c & 2 3 | & I 2 1 | = 2 C 3 1
3 D 3 4 3 (4,5) 3 D 4 (4,5)
4 E 4 5 4 |{"a™:1} 4 E 5 - {"a": 1}
5 F 5 6 5 6 5 F 6 6




PANDAS — IMPORT ET EXPORT DES DONNEES

& Import de la librairie
B import pandas as pd

B Import des données
B df = pd.read_csv(‘chemin/nom_du_fichier.csv’)
B df = pd.read_csv(‘chemin/nom_du_fichier.csv’, sheet_name=‘Sheet_name_1’)

B8 Utiliser pd.read_excel() pour lire des fichiers .xls, .xIsx

I Export des données
B df.to_csv(‘chemin/nom_fichier.csv’)

B df.to_excel(‘chemin/nom_fichier.xslx’, sheet_name=‘Sheet_name_1’)



PANDAS INDEXATION ET SELECTION

I Inspection des données :
W Afficher la premiére ou la derniére ligne :
B df.head(5)
B dftail(5)
I Obtenir les noms des colonnes et les types de données :

B df.info()
B df.dtypes

I Résumé des statistiques :

B df.describe()



PANDAS INDEXATION ET SELECTION

I Sélection de colonnes : df[’colonne”]

I Sélection des lignes par index :
B Par position : df.iloc[0]
B Par étiquette : df.loc[“index_label”]

CustomerlD Name Age Region Income Strata Sales

101 X1000 John 30 North High 250

Joc[102] - 102 X1010 Ann 19 North Medium 5000
103 X1020 Joe 25  South Medium 132

iloc[3] 104 X1030 Alice 53 East Low 400
105 X1040 Susan 38  South Medium 780

106 X1050 Bill 68 West High 223



PANDAS INDEXATION ET SELECTION

I Sélectionner des colonnes :
B df[‘col I’, “‘col2’, ‘col3]]
B new_df = df[[‘col I, ‘col2’, ‘col3’]]

2 Remarque :
B Le double [[ ]] permet de continuer & manipuler des datasets.

B Le simple [ ] pour sortir des datasets et manipuler une colonne.



PANDAS INDEXATION ET SELECTION

[ Sélection conditionnelle :

B df[df[‘col ’]<= valeur]
B df[(df[‘colI’]<= 500) & (df[‘col2’]> 10)]
B df[(df[‘col I’]<= 500) |(df[‘col2’]> 10)]

2 Remarque :
I Les mémes opérateurs qu’en SQL:
B < <= >, >
2 | (or), & (and),==,
B8 isnull(), notnull(), ~(not)



PANDAS INDEXATION ET SELECTION

I Sélection conditionnelle par texte :
B startswith()

[ df[df[“colonne”].astype(str).str.startswith(“texte”)]

B endswith()

[ df[df[“colonne”].astype(str).str.endswith(“‘texte”)]

B contains()
B df[df[“colonne”].astype(str).str.contains(“texte”)]

2 Remarque :

I Ajouter astype(str) si la colonne n’est pas un string



PANDAS NETTOYAGE ET TRANSFORMATION

DES DONNEES

B Traitement des données manquantes

B8 Supprimer les valeurs manquantes
B df.dropna()
I8 Remplir les valeurs manquantes

B dffillna(value)

B Renommer des colonnes

8 df.rename(columns={"ancienne_nom” : “nouveau_nom”, inplace=True)

2 Modification des types de données

)))))

I df[’nom_colonne”] = df[’nom_colonne”].astype["int”]



PANDAS TRAVAILLER AVEC DES DATES ET DES

HEURES

B Conversion en DateTime

B df[’colonne_date”] = pd.todatetime(df[“date_column™])

I Extraction de composants de date
B df[’year”] = df[date_column”].dt.year
B df[’month”] = df["date_column”].dt.month
B df["day”] = df["date_column”].dt.day



PANDAS — REGROUPEMENT ET AGGREGATION

I Regroupement des données :
B Group = df.groupby(‘color”)
I Aggregation :
B Group_agg = Group[“value”].mean()

Color

Value

11

12

aggregation

onvalue sort
ex: mean() ex: decsending
) o= —)



PANDAS FUSIONNER ET JOINDRE DES DONNEES

Result

B Concaténation de DataFrames

B Pd.concat([dfl, df2], axis=0)
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PANDAS FUSIONNER ET JOINDRE DES DONNEES

B Fusionner des DataFrames (jointure) :
B Fusion = pd.merge(dfl, df2, on="colonne_clé”)

B Fusion = pd.merge(dfl, df2, on="colonne_clé”, how="left”)

(0

@

INNER JOIN LEFT JOIN

g

RIGHT JOIN OUTER JOIN




PANDAS TRI DES DONNEES

B Tri par colonne :

B df trie = dfsort_values(by="column_name”, ascending=true)

2 Tri par index :

B dfsort_index(inplace=true)



PANDAS VISUALISATION AVEC PANDAS

B Visuels intégrés
B df[’colonne”].plot(kind="line”)
B df plot(kind="bar")

B Intégration avec Matplotlib
B Import matplotlib.pyplot as plt
B df[“colonne”].hist()
B Plt.show()



PANDAS OPERATIONS AVANCEES

Date City Temperature Temperature
. 2023-01-01  New York 32 Ci Los Angeles New York
I Table de pivot = J
. -01- ivot
. df.plvot_table() 2023-01-01 Los Angeles 75 P Date
2023-01-02 New York 30 2023-01-01 75 32

2023-01-02 | Los Angeles 77 2023-01-02 77 30



PANDAS OPERATIONS AVANCEES

B Appliquer des fonctions personnalisées

B df[°nom”] = df[’nom”].apply(lambda x: x.upper())

B df[“new_col”] = df[‘col”].apply(lambda x: np.nan if x < 90 else x)

2 Remarque :

I Cela évite de d'utiliser des boucles tout en gagnant en performance.



PANDAS STATISTIQUES DESCRIPTIVES

& Minimum : df['col’].min()

B Maximum : df['col’].max()

I Somme : df'col’].sum()

2 Moyenne : df['col'].mean()

B Compte : dff'col'].count()

2 Nb de valeurs uniques : df['col’].unique()
B Corrélation : df.corr()



PANDAS — APPLICATIONS REELLES DE PANDAS

B Nettoyage de données :

B Supprimer les doublons, gérer les valeurs manquantes et prétraiter les données.

B Analyse financiére :

I Traiter les données du marché boursier pour en tirer des tendances et des prédictions.

B WebScraping :

B} Analyser les données collectées sur les sites web a l'aide de bibliothéques comme BeautifulSoup.

I Apprentissage automatique :

B Préparer les données pour I'entrainement des modéles i l'aide de bibliothéques comme Scikit-
learn.



PANDAS — ERREURS COURANTES ET

SOLUTIONS

2 KeyError :

B Assurez-vous que les étiquettes de colonne ou d'index existent.

2 MemoryError (erreur de mémoire) :

I Optimiser les opérations pour les grands ensembles de données en utilisant des
chunks.

B SettingWithCopyWarning :

B Utiliser .loc[] pour éviter l'indexation en chaine.



PANDAS — BONNES PRATIQUES POUR

L'UTILISATION DE PANDAS

I Optimiser les performances :

B Utiliser des opérations vectorisées au lieu de boucles.

) Documenter le code :

B Etiqueter les colonnes et décrire les transformations pour plus de clarté.

B Valider les données :

B Vérifier les incohérences avant d'effectuer les opérations
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MODULE 3 : MATPLOTLIB

B Introduction a Matplotlib : Création de graphiques 2D personnalisés.

https://www.w3schools.com
/python/matplotlib_intro.asp



MATPLOTLIB INSTALLATION ET IMPORTATION

W Installation :
B pip install matplotlib
I Conda install matplotlib

B Importation : import matplotlib.pyplot as plt



MATPLOTLIB GRAPHIQUES SIMPLES

W Lignes : plt.plot(x, y)
B Barres : plt.bar(x, y)
B Nuages de points : plt.scatter(x, y)



MATPLOTLIB PERSONNALISATION

W Titre : plt.title('Titre')
I Légendes : plt.legend(['label I, 'label2'])
B Sauvegarde : plt.savefig('nom_fichier.png')



MATPLOTLIB EXEMPLE

B plt.pie(data=market, x=nb_origin2['n'], labels=nb_origin2['origin'],
autopct=‘%.0f%%')
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MODULE 4 : SEABORN

B Introduction a Seaborn : Création de graphiques élégants avec des thémes
prédéfinis.



SEABORN INSTALLATION ET IMPORTATION

W Installation :
B pip install seaborn

I Conda install seaborn

B Importation : import seaborn as sns



SEABORN GRAPHIQUES DISPONIBLES

Y Nuage de points : sns.scartterplot()
I Courbes : sns.lineplot()

B Graphiques a barres : sns.barplot()

I Boites a moustache : sns.boxplot()

I Distribution : sns.histplot(data), sns.kdeplot(data)



SEABORN EXEMPLE

B sb.barplot(data=nb_origin, x="origin", y="“pct”). set(title="12?", xlabel='date’,
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SEABORN HEATMAPS ET CORRELATIONS

I Exemple : sns.heatmap(df.corr(), annot=True)
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ETAPES SUIVANTES

B Pratiquer les concepts abordés avec des cas concrets.
B Approfondir les bibliothéques avec des projets avancés.
B Poser vos questions pour éclaircir les concepts difficiles.

B Parcourir de nouvelles ressources.



PYTHON ET LES BDD

™ Installation :
B pip install nom_bibliothéque (psycopg2-binary ou pymysql ou mariadb ou sqlite3)

B conda install nom_bibliothéque (psycopg2-binary ou pymysql ou mariadb ou sqlite3)

2 Importation :

B import nom_bibliothéque (psycopg2-binary ou pymysql ou mariadb ou sqlite3)



PYTHON ET LES BDD : SQLITE

sqlite3

conn = sqlite3.connect("m ite.db")
cursor = conn.cursor()

cursor.execute("""

CREATE TABLE IF NOT EXISTS utili
INTEGER PRIMARY KEY AUTOINC
TEXT NOT NULL,
INTEGER

cursor. L ( ge) VALUES (7, ?

e”, 29)

cursor.executemany( "INSERT INTO utilise

cursor.execute( "UPDATE ut WHERE nom = 2", (31,

cursor.execute( "DELETE FROM utilis VHERI = 2", ("Frank®,))

cursor.execute( "SELECT * FROM utilisateu

resultats = cursor.fetchall()

print(resultats)

ligne resultats:
print(ligne)

conn.commit()

*, utilisateurs)

Alice"

Template
import sqlite3

# Connexion ou création d'une BDD locale
conn = sqlite3.connect("ma_base_sqlite.db")
cursor = conn.cursor()

# Création de table

cursor.execute(™"

CREATE TABLE IF NOT EXISTS utilisateurs (
id INTEGER PRIMARY KEY AUTOINCREMENT,
nom TEXT NOT NULL,

age INTEGER
Do
)
# Insertion
cursor.execute("INSERT INTO utilisateurs (nom, age) VALUES (2, 2)",
("Alice”, 30))

# Insertion multiple
utilisateurs = [

("Frank", 32),
("Grace", 29)

cursor.executemany("INSERT INTO utilisateurs (nom, age) VALUES (2, ?)", utilisateurs)

# Mise a jour
cursor.execute("UPDATE utilisateurs SET age = ? WHERE nom = 2", (31, "Alice"))

# Suppression
cursor.execute("DELETE FROM utilisateurs WHERE nom = 2", ("Frank",))

# Requéte

cursor.execute("SELECT * FROM utilisateurs")
resultats = cursor.fetchall()

print(resultats)

conn.commit()

cursor.close()
conn.close()

https://www.sqlitetutorial.ne
t/sqlite-python/



PYTHON ET LES BDD : POSTGRES

t psycopg2

conn

conn.autocommit = True
cursor = conn.cursor()

cursor . execute
exists = cursor.fetchone()
t exists:
cursor.execute( A SE ma_bdd")

cursor.execute(""
CREATE TABLE IF N
i ERIAL

cursor .execute( " Ti

utilisateurs = [

cursor.execute( "DELETE FROM utili

cursor.execute

print{cursor. fetchall())

ligne cursor. fetchall():
print(ligne)

conn.commit()

cursor.close{ )

*ma_bdd ")

, utilisateurs)

Template
import psycopg2

# Connexion a PostgreSQL
conn = psycopg2.connect(
"localhost",
user="postgres",
password="mot_de_passe",

dbname="postgres" # pour créer une autre BDD

conn.autocommit = True
cursor = conn.cursor()

# Création d'une nouvelle BDD (si elle n'existe pas déja)
cursor.execute("SELECT | FROM pg_database WHERE datname = 'ma_bdd™)
exists = cursor-fetchone()
if not exists:

cursor.execute("CREATE DATABASE ma_bdd")

# Création de table

cursor.execute(""

CREATE TABLE IF NOT EXISTS utilisateurs (
id SERIAL PRIMARY KEY,
nom VARCHAR(100),
age INT

# Insertion
cursor.execute("INSERT INTO utilisateurs (nom, age) VALUES (%s, %s)", ("Bob", 25))

# Insertion multiple
utilisateurs = [
("Alice", 30),
("Eve", 28),
("Frank", 32)
cursor.executemany("INSERT INTO utilisateurs (nom, age) VALUES (%s, %s)", utilisateurs)

# Update
cursor.execute("UPDATE utilisateurs SET age = %s WHERE nom = %s", (26, "Bob"))

# Suppression
cursor.execute("DELETE FROM utilisateurs WHERE nom = %s", ("Bob",))

# Requéte
cursor.execute("SELECT * FROM utilisateurs")
print(cursor.fetchall())

for ligne in cursor.fetchall():
print(ligne)

conn.commit()

cursor.close()
conn.close()

https://www.psycopg.org/docs/usag
e.html



PYTHON ET LES BDD : MYSQL

t pymysql

conn = L.
al

)
conn.autocommit(True)
cursor = conn.cursor( )

cursor .execute(
cursor.execute(

cursor.execute( "

NT PRI

cursor .execute( "IN INTO wtil

cursor.executemany!

cursor .execute( " UP

cursor.execute( "DELETE FROM util

cursor.execute( LECT =

print(cursor.fetchall())

ligne cursor. fetchall():
print(ligne)

conn.commit(}
cursor.close( )
conn.close()

utilisateurs}

Template

import pymysql

# Connexion a MySQL

conn = pymysgl.connect(
ho: ocalhost”,
user="root",
password="mot_de_passe"

conn.autocommit(True)
cursor = conn.cursor()

# Création de la BDD
cursor.execute("CREATE DATABASE IF NOT EXISTS ma_bdd_mysql")
cursor.execute("USE ma_bdd_mysql")

# Création de table

cursor.execute("™

CREATE TABLE IF NOT EXISTS utilisateurs (
id INT AUTO_INCREMENT PRIMARY KEY,
nom VARCHAR(100),
age INT

}”'")

# Insertion
cursor.execute("INSERT INTO utilisateurs (nom, age) VALUES (%s, %s)", ("Claire", 28))

# Insertion multiple
utilisateurs = [
("David", 35),
("Eve", 28;.
("Frank", 32)
cursor.executemany("INSERT INTO utilisateurs (nom, age) VALUES (%s, %s)", utilisateurs)

# Update
cursor.execute("UPDATE utilisateurs SET age = %s WHERE nom = %s", (29, "Claire"))

# Suppression
cursor.execute("DELETE FROM utilisateurs WHERE nom = %s", ("Claire",))

# Requéte
cursor.execute("SELECT * FROM utilisateurs")
print(cursor.fetchall())

for ligne in cursor.fetchall():
print(ligne)

conn.commit()
cursor.close()
conn.close()

https://www.w3schools.com
/python/python_mysql_gets
tarted.asp



PYTHON ET LES BDD : MARIADB

password=

hos
)
conn.autocommit = True
cursor = conn.cursor( }

cursor.execute(” N X ma_bdd_mz
cursor.execute(” ma_bdd_m:

cursor.execute(™"
TE LE IF

cursor.execute( " INSERT

utilisateurs = [

utilisateurs)

cursor.execute( "UPDATE util s ? id"))

cursor.execute( "DELETE FROM utili

cursor.execute( "SELEC

print(cursor.fetchall())

ligne cursor. fetchall( ):
print{ligne)

conn.commit( }
cursor.close( )
conn.close()

Template

import mariadb

# Connexion a MariaDB
conn = mariadb.connect(
user="root",
assword="mot_de_passe",
host="localhost"

conn.autocommit = True
cursor = conn.cursor()

# Création de la BDD
cursor.execute("CREATE DATABASE IF NOT EXISTS ma_bdd_mariadb")
cursor.execute("USE ma_bdd_mariadb")

# Création de la table

cursor.execute("™

CREATE TABLE IF NOT EXISTS utilisateurs (
id INT AUTO_INCREMENT PRIMARY KEY,
nom VARCHAR(100),
age INT

}”'")

# Insertion
cursor.execute("INSERT INTO utilisateurs (nom, age) VALUES (2, 2)", ("David", 35))

# Insertion multiple

utilisateurs = [
("Eve", 2sg.
("Frank", 32)

cursor.executemany("INSERT INTO utilisateurs (nom, age) VALUES (2, 2)", utilisateurs)

# Update
cursor.execute("UPDATE utilisateurs SET age = ? WHERE nom = 2", (36, "David"))

# Suppression
cursor.execute("DELETE FROM utilisateurs WHERE nom = 2", ("David",))

# Requéte
cursor.execute("SELECT * FROM utilisateurs")
print(cursor.fetchall())

for ligne in cursor.fetchall():
print(ligne)

conn.commit()
cursor-.close()
conn.close()

https://mariadb.com/resources/blog/
how-to-connect-python-programs-
to-mariadb/
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