INTRODUCTION

B Python pour I'analyse des données : Introduction 8 NumPy, Pandas, Matplotlib et
Seaborn.

I Objectifs :
B Comprendre pourquoi et comment utiliser chaque outil.
B Découvrir leurs concepts fondamentaux.

B Apprendre via des cas pratiques.

Naidine Mohamed
naidine.mohamed1@gmail.com

POURQUOI PYTHON POUR LA DATA?

I Langage puissant, flexible et lisible.
I Large écosystéme pour la manipulation de données et la visualisation.

I Bibliothéques optimisées pour la performance.

ETAPES CLES DE L’ANALYSE DE DONNEES

v ¥
v/ U

i_/} _/
Lecture des Transformation et Analyse et Visualisation des
données nettoyage modélisation résultats

MODULE | : NUMPY

B Introduction 2 NumPy : Manipulation efficace des tableaux numériques et calculs
optimisés.

B Caractéristiques clés :
B Prend en charge les tableaux multidimensionnels et les matrices.
B Fournit des outils pour la manipulation des tableaux et les opérations mathématiques.

I Sert de base a des bibliothéques telles que Pandas, Matplotlib et Scikit-learn.

https://www.w3schools.com
/python/numpy/default.asp

MODULE | : NUMPY

B Cas pratique :
B Manipulation et transformation des données.
B0 Algébre linéaire, transformée de Fourier et génération de nombres aléatoires.
B Calculs a haute performance pour les grands ensembles de données.

I Génération de datasets

NUMPY INSTALLATION ET IMPORTATION

™ Installation :

2 pip install numpy
¥ conda install numpy

2 Importation :

& import numpy as np

NUMPY CREATION DE TABLEAUX

W np.array([l, 2, 3]) : Crée un tableau a partir d’une liste.

W np.array([[1, 2], [3, 4]]) : Crée une matrice a partir de deux listes

I Remarques importantes :
I Les tableaux sont plus efficaces que les listes Python.

B Utilisez .shape pour obtenir les dimensions d'un tableau.

NUMPY CREATION DE TABLEAUX

B np.zeros((3, 3)) : Matrice de zéros de taille 3x3.

I np.ones((2, 4)) : Matrice de un de taille 2 lignes et 4 colonnes.
2 np.random((3, 3)) : Matrice de valeurs aléatoires de taille 3x3.
B np.linspace(0, I, 5) : Génére 5 valeurs entre 0 et |.

B np.eye(4) : Matrice identité avec | en diagonale de taille 4x4

B Remarques importantes :
B Personnalisation des formes de tableaux a l'aide de tuples.

B Utile pour initialiser les poids dans |'apprentissage automatique

NUMPY OPERATIONS MATHEMATIQUES

Addition :

B Array + 2 : ajoute 2 a tous les éléments

B arrayl + array2 : addition de tous les éléments
B Multiplication :

B Arrayl *array2

B Np.dot(arrayl, array2)

B Np.matmul(array|, array2)

Moyenne : np.mean(array)

Somme : np.sum(array)

8 Remarques importantes :

I Les opérations sont vectorisées, ce qui les rend plus rapides que les boucles Python.

B Utilisez np.matmul pour la multiplication de matrices.

NUMPY INDEXATION ET DECOUPAGE

B Accés aux éléments :
B Arr =nparray([l, 2, 3, 4, 5, 6])

B Arr[0] = accés au premier élément

B8 Arr[-1] = accés au dernier élément

¥ Découpage de tableaux :

B Arr[l1:4] = accés aux éléments | a 3
B Indexation multidimensionnelle :
B Arr =nparray([[I, 2, 3], [4, 5, 6]])

B A[O, 2] = accés au premier élément , 3éme colonne

B} Remarques importantes :

B Lindex commence a2 0

NUMPY MANIPULATION DES DIMENSIONS

B Reshape :
B array.reshape((rows, cols)) : Convertit la taille d’'une matrice
I Concaténation de tableaux :
B np.concatenate((arrl, arr2))
B Découpage de tableaux :
B Np.split(arr, 2)
B Transposer tableau :

B array.T
& Np.transpose(arr)

NUMPY ALGEBRE LINEAIRE

I Résolution de systémes linéaires
B A =nparray([[3, 1], [I, 2]]

& B = np.array([9, 8])
B X = np.linalg.solve(a, b)

NUMPY TRAVAILLER AVEC DES NOMBRES

ALEATOIRES

B Générations de nombres aléatoires :
B Np.random.seed(42) : paramétrage de reproductibilité
B Np.random.rand(3) : générer 3 nombres aléatoires
" Entiers aléatoires :

B Np.random.randint(0, 10, size=5) : générer des entiers aléatoires entre 0 et 9

NUMPY — POUR LA DATA ANALYSE

I Nettoyage des données

B Gérer les valeurs manquantes et les valeurs aberrantes.

B Transformation des données

B Normaliser et mettre a I'échelle les données.

B Intégration

B Utilisation avec Pandas pour l'analyse de données tabulaires.

NUMPY — APPLICATIONS REELLES DE NUMPY

B Science des données :

B Traiter de grands ensembles de données pour les modéles d'apprentissage automatique.

B Traitement d'images :

B Manipuler et analyser des données d'images sous forme de tableaux.

B Simulations physiques

B Effectuer des calculs sur des données multidimensionnelles.

B Finance :

I8 Modéliser et analyser les cours des actions et les tendances du marché.

NUMPY — ERREURS COURANTES ET SOLUTIONS

2 Shape Mismatch :

B Vérifier la forme des tableaux avant les opérations.

2 TypeError :

I Veillez a la cohérence des types de données dans les tableaux.

2 MemoryError :

B Utilisez des types de données plus petits ou découpez les grands ensembles de
données.

NUMPY — BONNES PRATIQUES POUR

L'UTILISATION DE NUMPY

I Utiliser des opérations vectorisées :

B Eviter les boucles Python pour de meilleures performances.

B Documenter les transformations :

B Garder une trace des formes et des manipulations des tableaux.

I Définir des graines aléatoires (seed) :

B Assurer la reproductibilité des opérations aléatoires.

MODULE 2 : PANDAS

B Introduction a Pandas : Analyse et manipulation de données structurées avec
DataFrame et Series.

B Caractéristiques clés :

B Simplifie le travail avec des données structurées comme les tableaux et les séries
chronologiques.

I Prise en charge de l'importation et de I'exportation de données a partir de différents
formats (CSV, Excel, SQL, etc.).

I Offre des structures de données faciles a utiliser comme les DataFrames et les Séries.

https://www.w3schools.com
/python/pandas/default.asp

MODULE 2 : PANDAS

B Cas pratique :

B Nettoyage et prétraitement des données.
B Analyse exploratoire des données (EDA).

B Intégration avec des bibliothéques de visualisation et d'apprentissage automatique.

PANDAS INSTALLATION ET IMPORTATION

W Installation :
B pip install pandas
I Conda install pandas

2 Importation : import pandas as pd

PANDAS DATAFRAME ET SERIES

I Tableau unidimensionnel étiqueté pouvant contenir n'importe quel type de
données.

I Idéale pour les données a colonne unique.

Series 1
B Créer une série : INDEX | DATA
B pd.Series([0, I, 2], index["a”, “b”, “c”]) o A
1 B
2 | ¢
3 D
4 E
5 F

PANDAS DATAFRAME ET SERIES

8 Structure de données bidimensionnelle et tabulaire.

I Peut contenir des types de données hétérogénes.

" Créer un DataFrame :
. Data = {"Series | ["A”, "B”], “Saries?”: [u I ”’ "2”],
!

Series 1 Series 2 Series 3 Dataframe
—_— IINDEX DATA INDEX | DATA INDEX | DATA . INDEX SERIES 1 SERIES 2 SERIES 3

0 df = pd.DataFrame(data) """ 7 Taa e a
1 B 1 2 1 A il B 2 A
2 c & 2 3 | & I 2 1 | = 2 C 3 1
3 D 3 4 3 (4,5) 3 D 4 (4,5)
4 E 4 5 4 |{"a™:1} 4 E 5 - {"a": 1}
5 F 5 6 5 6 5 F 6 6

PANDAS — IMPORT ET EXPORT DES DONNEES

& Import de la librairie
B import pandas as pd

B Import des données
B df = pd.read_csv(‘chemin/nom_du_fichier.csv’)
B df = pd.read_csv(‘chemin/nom_du_fichier.csv’, sheet_name=‘Sheet_name_1’)

B8 Utiliser pd.read_excel() pour lire des fichiers .xls, .xIsx

I Export des données
B df.to_csv(‘chemin/nom_fichier.csv’)

B df.to_excel(‘chemin/nom_fichier.xslx’, sheet_name=‘Sheet_name_1’)

PANDAS INDEXATION ET SELECTION

I Inspection des données :
W Afficher la premiére ou la derniére ligne :
B df.head(5)
B dftail(5)
I Obtenir les noms des colonnes et les types de données :

B df.info()
B df.dtypes

I Résumé des statistiques :

B df.describe()

PANDAS INDEXATION ET SELECTION

I Sélection de colonnes : df[’colonne”]

I Sélection des lignes par index :
B Par position : df.iloc[0]
B Par étiquette : df.loc[“index_label”]

CustomerlD Name Age Region Income Strata Sales

101 X1000 John 30 North High 250

Joc[102] - 102 X1010 Ann 19 North Medium 5000
103 X1020 Joe 25 South Medium 132

iloc[3] 104 X1030 Alice 53 East Low 400
105 X1040 Susan 38 South Medium 780

106 X1050 Bill 68 West High 223

PANDAS INDEXATION ET SELECTION

I Sélectionner des colonnes :
B df[‘col I’, “‘col2’, ‘col3]]
B new_df = df[[‘col I, ‘col2’, ‘col3’]]

2 Remarque :
B Le double [[]] permet de continuer & manipuler des datasets.

B Le simple [] pour sortir des datasets et manipuler une colonne.

PANDAS INDEXATION ET SELECTION

[Sélection conditionnelle :

B df[df[‘col ’]<= valeur]
B df[(df[‘colI’]<= 500) & (df[‘col2’]> 10)]
B df[(df[‘col I’]<= 500) |(df[‘col2’]> 10)]

2 Remarque :
I Les mémes opérateurs qu’en SQL:
B < <= >, >
2 | (or), & (and),==,
B8 isnull(), notnull(), ~(not)

PANDAS INDEXATION ET SELECTION

I Sélection conditionnelle par texte :
B startswith()

[df[df[“colonne”].astype(str).str.startswith(“texte”)]

B endswith()

[df[df[“colonne”].astype(str).str.endswith(“‘texte”)]

B contains()
B df[df[“colonne”].astype(str).str.contains(“texte”)]

2 Remarque :

I Ajouter astype(str) si la colonne n’est pas un string

PANDAS NETTOYAGE ET TRANSFORMATION

DES DONNEES

B Traitement des données manquantes

B8 Supprimer les valeurs manquantes
B df.dropna()
I8 Remplir les valeurs manquantes

B dffillna(value)

B Renommer des colonnes

8 df.rename(columns={"ancienne_nom” : “nouveau_nom”, inplace=True)

2 Modification des types de données

)))))

I df[’nom_colonne”] = df[’nom_colonne”].astype["int”]

PANDAS TRAVAILLER AVEC DES DATES ET DES

HEURES

B Conversion en DateTime

B df[’colonne_date”] = pd.todatetime(df[“date_column™])

I Extraction de composants de date
B df[’year”] = df[date_column”].dt.year
B df[’month”] = df["date_column”].dt.month
B df["day”] = df["date_column”].dt.day

PANDAS — REGROUPEMENT ET AGGREGATION

I Regroupement des données :
B Group = df.groupby(‘color”)
I Aggregation :
B Group_agg = Group[“value”].mean()

Color

Value

11

12

aggregation

onvalue sort
ex: mean() ex: decsending
) o= —)

PANDAS FUSIONNER ET JOINDRE DES DONNEES

Result

B Concaténation de DataFrames

B Pd.concat([dfl, df2], axis=0)

ElB|E|E|H|E

E|E|EB|G|E]E|E|E|E

Bl |Gle|afafrfa

2 E|H

&
s | Bl B| G| E|EB|]E|B|BE]R]E

E
5]
&

(U
e o=

E
]

PANDAS FUSIONNER ET JOINDRE DES DONNEES

B Fusionner des DataFrames (jointure) :
B Fusion = pd.merge(dfl, df2, on="colonne_clé”)

B Fusion = pd.merge(dfl, df2, on="colonne_clé”, how="left”)

(0

@

INNER JOIN LEFT JOIN

g

RIGHT JOIN OUTER JOIN

PANDAS TRI DES DONNEES

B Tri par colonne :

B df trie = dfsort_values(by="column_name”, ascending=true)

2 Tri par index :

B dfsort_index(inplace=true)

PANDAS VISUALISATION AVEC PANDAS

B Visuels intégrés
B df[’colonne”].plot(kind="line”)
B df plot(kind="bar")

B Intégration avec Matplotlib
B Import matplotlib.pyplot as plt
B df[“colonne”].hist()
B Plt.show()

PANDAS OPERATIONS AVANCEES

Date City Temperature Temperature
. 2023-01-01 New York 32 Ci Los Angeles New York
I Table de pivot = J
. -01- ivot
. df.plvot_table() 2023-01-01 Los Angeles 75 P Date
2023-01-02 New York 30 2023-01-01 75 32

2023-01-02 | Los Angeles 77 2023-01-02 77 30

PANDAS OPERATIONS AVANCEES

B Appliquer des fonctions personnalisées

B df[°nom”] = df[’nom”].apply(lambda x: x.upper())

B df[“new_col”] = df[‘col”].apply(lambda x: np.nan if x < 90 else x)

2 Remarque :

I Cela évite de d'utiliser des boucles tout en gagnant en performance.

PANDAS STATISTIQUES DESCRIPTIVES

& Minimum : df['col’].min()

B Maximum : df['col’].max()

I Somme : df'col’].sum()

2 Moyenne : df['col'].mean()

B Compte : dff'col'].count()

2 Nb de valeurs uniques : df['col’].unique()
B Corrélation : df.corr()

PANDAS — APPLICATIONS REELLES DE PANDAS

B Nettoyage de données :

B Supprimer les doublons, gérer les valeurs manquantes et prétraiter les données.

B Analyse financiére :

I Traiter les données du marché boursier pour en tirer des tendances et des prédictions.

B WebScraping :

B} Analyser les données collectées sur les sites web a l'aide de bibliothéques comme BeautifulSoup.

I Apprentissage automatique :

B Préparer les données pour I'entrainement des modéles i l'aide de bibliothéques comme Scikit-
learn.

PANDAS — ERREURS COURANTES ET

SOLUTIONS

2 KeyError :

B Assurez-vous que les étiquettes de colonne ou d'index existent.

2 MemoryError (erreur de mémoire) :

I Optimiser les opérations pour les grands ensembles de données en utilisant des
chunks.

B SettingWithCopyWarning :

B Utiliser .loc[] pour éviter l'indexation en chaine.

PANDAS — BONNES PRATIQUES POUR

L'UTILISATION DE PANDAS

I Optimiser les performances :

B Utiliser des opérations vectorisées au lieu de boucles.

) Documenter le code :

B Etiqueter les colonnes et décrire les transformations pour plus de clarté.

B Valider les données :

B Vérifier les incohérences avant d'effectuer les opérations

[Scatterplot [58 } .

{o/c’ Line Plot]

I I
~ N
Analyse de corrélation -'\‘ : : f,'— Analyse de tendances
. . | \ ~ / |
Detectu::n de valeurs | - i - * Données temporelles
abérrantes =
Graphiques
[Box Plot @]*" basiques TN
Dispersion des - J : Distribution des

-~

données . i
Analyse des quartiles -’ :
1

[@ Pie Chart]

- Représentation proportionnelle

frequences

- o =

- Données catégoriques

MODULE 3 : MATPLOTLIB

B Introduction a Matplotlib : Création de graphiques 2D personnalisés.

https://www.w3schools.com
/python/matplotlib_intro.asp

MATPLOTLIB INSTALLATION ET IMPORTATION

W Installation :
B pip install matplotlib
I Conda install matplotlib

B Importation : import matplotlib.pyplot as plt

MATPLOTLIB GRAPHIQUES SIMPLES

W Lignes : plt.plot(x, y)
B Barres : plt.bar(x, y)
B Nuages de points : plt.scatter(x, y)

MATPLOTLIB PERSONNALISATION

W Titre : plt.title('Titre')
I Légendes : plt.legend(['label I, 'label2'])
B Sauvegarde : plt.savefig('nom_fichier.png')

MATPLOTLIB EXEMPLE

B plt.pie(data=market, x=nb_origin2['n'], labels=nb_origin2['origin'],
autopct=‘%.0f%%')

) direct traffic
social =

email

referral
other

displa
oth%r_%ublicities

paid_search

organic_search

MODULE 4 : SEABORN

B Introduction a Seaborn : Création de graphiques élégants avec des thémes
prédéfinis.

SEABORN INSTALLATION ET IMPORTATION

W Installation :
B pip install seaborn

I Conda install seaborn

B Importation : import seaborn as sns

SEABORN GRAPHIQUES DISPONIBLES

Y Nuage de points : sns.scartterplot()
I Courbes : sns.lineplot()

B Graphiques a barres : sns.barplot()

I Boites a moustache : sns.boxplot()

I Distribution : sns.histplot(data), sns.kdeplot(data)

SEABORN EXEMPLE

B sb.barplot(data=nb_origin, x="origin", y="“pct”). set(title="12?", xlabel='date’,

_‘ 14 14 14 1]
ylabel=‘leads généres’) % -
30 4
25 B
20 1
S

15 B
10 A
5 4
0

S & @ ¢ 2 > & B

‘_,é"é‘ 4?\“ & é""& & «5"6 & OQQ\ '0'\.
Qoocl @b/ 0&0 é?o
$ &

origin

SEABORN HEATMAPS ET CORRELATIONS

I Exemple : sns.heatmap(df.corr(), annot=True)

-0.654733

ATz -0.0638539

O W >

-0.764484 (B -0.0656217

D BUGEEYERER -0.0638539 -0.0656217

ETAPES SUIVANTES

B Pratiquer les concepts abordés avec des cas concrets.
B Approfondir les bibliothéques avec des projets avancés.
B Poser vos questions pour éclaircir les concepts difficiles.

B Parcourir de nouvelles ressources.

PYTHON ET LES BDD

™ Installation :
B pip install nom_bibliothéque (psycopg2-binary ou pymysql ou mariadb ou sqlite3)

B conda install nom_bibliothéque (psycopg2-binary ou pymysql ou mariadb ou sqlite3)

2 Importation :

B import nom_bibliothéque (psycopg2-binary ou pymysql ou mariadb ou sqlite3)

PYTHON ET LES BDD : SQLITE

sqlite3

conn = sqlite3.connect("m ite.db")
cursor = conn.cursor()

cursor.execute("""

CREATE TABLE IF NOT EXISTS utili
INTEGER PRIMARY KEY AUTOINC
TEXT NOT NULL,
INTEGER

cursor. L (ge) VALUES (7, ?

e”, 29)

cursor.executemany("INSERT INTO utilise

cursor.execute("UPDATE ut WHERE nom = 2", (31,

cursor.execute("DELETE FROM utilis VHERI = 2", ("Frank®,))

cursor.execute("SELECT * FROM utilisateu

resultats = cursor.fetchall()

print(resultats)

ligne resultats:
print(ligne)

conn.commit()

*, utilisateurs)

Alice"

Template
import sqlite3

Connexion ou création d'une BDD locale
conn = sqlite3.connect("ma_base_sqlite.db")
cursor = conn.cursor()

Création de table

cursor.execute(™"

CREATE TABLE IF NOT EXISTS utilisateurs (
id INTEGER PRIMARY KEY AUTOINCREMENT,
nom TEXT NOT NULL,

age INTEGER
Do
)
Insertion
cursor.execute("INSERT INTO utilisateurs (nom, age) VALUES (2, 2)",
("Alice”, 30))

Insertion multiple
utilisateurs = [

("Frank", 32),
("Grace", 29)

cursor.executemany("INSERT INTO utilisateurs (nom, age) VALUES (2, ?)", utilisateurs)

Mise a jour
cursor.execute("UPDATE utilisateurs SET age = ? WHERE nom = 2", (31, "Alice"))

Suppression
cursor.execute("DELETE FROM utilisateurs WHERE nom = 2", ("Frank",))

Requéte

cursor.execute("SELECT * FROM utilisateurs")
resultats = cursor.fetchall()

print(resultats)

conn.commit()

cursor.close()
conn.close()

https://www.sqlitetutorial.ne
t/sqlite-python/

PYTHON ET LES BDD : POSTGRES

t psycopg2

conn

conn.autocommit = True
cursor = conn.cursor()

cursor . execute
exists = cursor.fetchone()
t exists:
cursor.execute(A SE ma_bdd")

cursor.execute(""
CREATE TABLE IF N
i ERIAL

cursor .execute(" Ti

utilisateurs = [

cursor.execute("DELETE FROM utili

cursor.execute

print{cursor. fetchall())

ligne cursor. fetchall():
print(ligne)

conn.commit()

cursor.close{)

*ma_bdd ")

, utilisateurs)

Template
import psycopg2

Connexion a PostgreSQL
conn = psycopg2.connect(
"localhost",
user="postgres",
password="mot_de_passe",

dbname="postgres" # pour créer une autre BDD

conn.autocommit = True
cursor = conn.cursor()

Création d'une nouvelle BDD (si elle n'existe pas déja)
cursor.execute("SELECT | FROM pg_database WHERE datname = 'ma_bdd™)
exists = cursor-fetchone()
if not exists:

cursor.execute("CREATE DATABASE ma_bdd")

Création de table

cursor.execute(""

CREATE TABLE IF NOT EXISTS utilisateurs (
id SERIAL PRIMARY KEY,
nom VARCHAR(100),
age INT

Insertion
cursor.execute("INSERT INTO utilisateurs (nom, age) VALUES (%s, %s)", ("Bob", 25))

Insertion multiple
utilisateurs = [
("Alice", 30),
("Eve", 28),
("Frank", 32)
cursor.executemany("INSERT INTO utilisateurs (nom, age) VALUES (%s, %s)", utilisateurs)

Update
cursor.execute("UPDATE utilisateurs SET age = %s WHERE nom = %s", (26, "Bob"))

Suppression
cursor.execute("DELETE FROM utilisateurs WHERE nom = %s", ("Bob",))

Requéte
cursor.execute("SELECT * FROM utilisateurs")
print(cursor.fetchall())

for ligne in cursor.fetchall():
print(ligne)

conn.commit()

cursor.close()
conn.close()

https://www.psycopg.org/docs/usag
e.html

PYTHON ET LES BDD : MYSQL

t pymysql

conn = L.
al

)
conn.autocommit(True)
cursor = conn.cursor()

cursor .execute(
cursor.execute(

cursor.execute("

NT PRI

cursor .execute("IN INTO wtil

cursor.executemany!

cursor .execute(" UP

cursor.execute("DELETE FROM util

cursor.execute(LECT =

print(cursor.fetchall())

ligne cursor. fetchall():
print(ligne)

conn.commit(}
cursor.close()
conn.close()

utilisateurs}

Template

import pymysql

Connexion a MySQL

conn = pymysgl.connect(
ho: ocalhost”,
user="root",
password="mot_de_passe"

conn.autocommit(True)
cursor = conn.cursor()

Création de la BDD
cursor.execute("CREATE DATABASE IF NOT EXISTS ma_bdd_mysql")
cursor.execute("USE ma_bdd_mysql")

Création de table

cursor.execute("™

CREATE TABLE IF NOT EXISTS utilisateurs (
id INT AUTO_INCREMENT PRIMARY KEY,
nom VARCHAR(100),
age INT

}”'")

Insertion
cursor.execute("INSERT INTO utilisateurs (nom, age) VALUES (%s, %s)", ("Claire", 28))

Insertion multiple
utilisateurs = [
("David", 35),
("Eve", 28;.
("Frank", 32)
cursor.executemany("INSERT INTO utilisateurs (nom, age) VALUES (%s, %s)", utilisateurs)

Update
cursor.execute("UPDATE utilisateurs SET age = %s WHERE nom = %s", (29, "Claire"))

Suppression
cursor.execute("DELETE FROM utilisateurs WHERE nom = %s", ("Claire",))

Requéte
cursor.execute("SELECT * FROM utilisateurs")
print(cursor.fetchall())

for ligne in cursor.fetchall():
print(ligne)

conn.commit()
cursor.close()
conn.close()

https://www.w3schools.com
/python/python_mysql_gets
tarted.asp

PYTHON ET LES BDD : MARIADB

password=

hos
)
conn.autocommit = True
cursor = conn.cursor(}

cursor.execute(” N X ma_bdd_mz
cursor.execute(” ma_bdd_m:

cursor.execute(™"
TE LE IF

cursor.execute(" INSERT

utilisateurs = [

utilisateurs)

cursor.execute("UPDATE util s ? id"))

cursor.execute("DELETE FROM utili

cursor.execute("SELEC

print(cursor.fetchall())

ligne cursor. fetchall():
print{ligne)

conn.commit(}
cursor.close()
conn.close()

Template

import mariadb

Connexion a MariaDB
conn = mariadb.connect(
user="root",
assword="mot_de_passe",
host="localhost"

conn.autocommit = True
cursor = conn.cursor()

Création de la BDD
cursor.execute("CREATE DATABASE IF NOT EXISTS ma_bdd_mariadb")
cursor.execute("USE ma_bdd_mariadb")

Création de la table

cursor.execute("™

CREATE TABLE IF NOT EXISTS utilisateurs (
id INT AUTO_INCREMENT PRIMARY KEY,
nom VARCHAR(100),
age INT

}”'")

Insertion
cursor.execute("INSERT INTO utilisateurs (nom, age) VALUES (2, 2)", ("David", 35))

Insertion multiple

utilisateurs = [
("Eve", 2sg.
("Frank", 32)

cursor.executemany("INSERT INTO utilisateurs (nom, age) VALUES (2, 2)", utilisateurs)

Update
cursor.execute("UPDATE utilisateurs SET age = ? WHERE nom = 2", (36, "David"))

Suppression
cursor.execute("DELETE FROM utilisateurs WHERE nom = 2", ("David",))

Requéte
cursor.execute("SELECT * FROM utilisateurs")
print(cursor.fetchall())

for ligne in cursor.fetchall():
print(ligne)

conn.commit()
cursor-.close()
conn.close()

https://mariadb.com/resources/blog/
how-to-connect-python-programs-
to-mariadb/

	Diapositive 1 INTRODUCTION
	Diapositive 2 POURQUOI PYTHON POUR LA DATA ?
	Diapositive 3 ÉTAPES CLÉS DE L’ANALYSE DE DONNÉES
	Diapositive 4 MODULE 1 : NUMPY
	Diapositive 5 MODULE 1 : NUMPY
	Diapositive 6 NUMPY INSTALLATION ET IMPORTATION
	Diapositive 7 NUMPY CRÉATION DE TABLEAUX
	Diapositive 8 NUMPY CRÉATION DE TABLEAUX
	Diapositive 9 NUMPY OPÉRATIONS MATHÉMATIQUES
	Diapositive 10 NUMPY INDEXATION ET DÉCOUPAGE
	Diapositive 11 NUMPY MANIPULATION DES DIMENSIONS
	Diapositive 12 NUMPY ALGÈBRE LINÉAIRE
	Diapositive 13 NUMPY TRAVAILLER AVEC DES NOMBRES ALÉATOIRES
	Diapositive 14 NUMPY – POUR LA DATA ANALYSE
	Diapositive 15 NUMPY – APPLICATIONS RÉELLES DE NUMPY
	Diapositive 16 NUMPY – ERREURS COURANTES ET SOLUTIONS
	Diapositive 17 NUMPY – BONNES PRATIQUES POUR L'UTILISATION DE NUMPY
	Diapositive 18 MODULE 2 : PANDAS
	Diapositive 19 MODULE 2 : PANDAS
	Diapositive 20 PANDAS INSTALLATION ET IMPORTATION
	Diapositive 21 PANDAS DATAFRAME ET SERIES
	Diapositive 22 PANDAS DATAFRAME ET SERIES
	Diapositive 23 PANDAS – IMPORT ET EXPORT DES DONNÉES
	Diapositive 24 PANDAS INDEXATION ET SÉLECTION
	Diapositive 25 PANDAS INDEXATION ET SÉLECTION
	Diapositive 26 PANDAS INDEXATION ET SÉLECTION
	Diapositive 27 PANDAS INDEXATION ET SÉLECTION
	Diapositive 28 PANDAS INDEXATION ET SÉLECTION
	Diapositive 29 PANDAS NETTOYAGE ET TRANSFORMATION DES DONNÉES
	Diapositive 30 PANDAS TRAVAILLER AVEC DES DATES ET DES HEURES
	Diapositive 31 PANDAS – REGROUPEMENT ET AGGREGATION
	Diapositive 32 PANDAS FUSIONNER ET JOINDRE DES DONNÉES
	Diapositive 33 PANDAS FUSIONNER ET JOINDRE DES DONNÉES
	Diapositive 34 PANDAS TRI DES DONNÉES
	Diapositive 35 PANDAS VISUALISATION AVEC PANDAS
	Diapositive 36 PANDAS OPÉRATIONS AVANCÉES
	Diapositive 37 PANDAS OPÉRATIONS AVANCÉES
	Diapositive 38 PANDAS STATISTIQUES DESCRIPTIVES
	Diapositive 39 PANDAS – APPLICATIONS RÉELLES DE PANDAS
	Diapositive 40 PANDAS – ERREURS COURANTES ET SOLUTIONS
	Diapositive 41 PANDAS – BONNES PRATIQUES POUR L'UTILISATION DE PANDAS
	Diapositive 42
	Diapositive 43 MODULE 3 : MATPLOTLIB
	Diapositive 44 MATPLOTLIB INSTALLATION ET IMPORTATION
	Diapositive 45 MATPLOTLIB GRAPHIQUES SIMPLES
	Diapositive 46 MATPLOTLIB PERSONNALISATION
	Diapositive 47 MATPLOTLIB EXEMPLE
	Diapositive 48 MODULE 4 : SEABORN
	Diapositive 49 SEABORN INSTALLATION ET IMPORTATION
	Diapositive 50 SEABORN GRAPHIQUES DISPONIBLES
	Diapositive 51 SEABORN EXEMPLE
	Diapositive 52 SEABORN HEATMAPS ET CORRÉLATIONS
	Diapositive 53 ÉTAPES SUIVANTES
	Diapositive 54 PYTHON ET LES BDD
	Diapositive 55 PYTHON ET LES BDD : SQLITE
	Diapositive 56 PYTHON ET LES BDD : POSTGRES
	Diapositive 57 PYTHON ET LES BDD : MYSQL
	Diapositive 58 PYTHON ET LES BDD : MARIADB

